Generating Semantically Similar and Human-Readable Summaries With Generative Adversarial Networks
نویسندگان
چکیده
منابع مشابه
Semantically Decomposing the Latent Spaces of Generative Adversarial Networks
We propose a new algorithm for training generative adversarial networks that jointly learns latent codes for both identities (e.g. individual humans) and observations (e.g. specific photographs). By fixing the identity portion of the latent codes, we can generate diverse images of the same subject, and by fixing the observation portion, we can traverse the manifold of subjects while maintaining...
متن کاملGenerating Images Part by Part with Composite Generative Adversarial Networks
Image generation remains a fundamental problem in artificial intelligence in general and deep learning in specific. The generative adversarial network (GAN) was successful in generating high quality samples of natural images. We propose a model called composite generative adversarial network, that reveals the complex structure of images with multiple generators in which each generator generates...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملConstruction with Generative Adversarial Networks
Three-dimensional (3D) Reconstruction is a vital and challenging research topic in advanced computer graphics and computer vision due to the intrinsic complexity and computation cost. Existing methods often produce holes, distortions and obscure parts in the reconstructed 3D models which are not adequate for real usage. The focus of this paper is to achieve high quality 3D reconstruction perfor...
متن کاملGenerating Multi-label Discrete Patient Records using Generative Adversarial Networks
Access to electronic health record (EHR) data has motivated computational advances in medical research. However, various concerns, particularly over privacy, can limit access to and collaborative use of EHR data. Sharing synthetic EHR data could mitigate risk. In this paper, we propose a new approach, medical Generative Adversarial Network (medGAN), to generate realistic synthetic patient recor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2955087